03.11.2009 15:16 Администратор
Печать PDF
ImageСверхпроводящий слой вещества толщиной менее одного нанометра впервые смогли получить физики из Национальной лаборатории Брукхэвен (Brookhaven National Laboratory). Не меньшей проблемой для учёных был поиск доказательств того, что именно этот единичный слой обладает столь нужными свойствами.

Долгое время теоретики спорили, может ли вообще сверхпроводимость существовать в столь малых объёмах. Многие научные группы пытались получить очень тонкие плёнки, например из купратов (cuprate), материалов, основой которых служили оксиды меди. Однако результат был по большей части один и тот же: слишком большая шероховатость поверхности плёнки сводила все усилия на нет.

Для создания плёнок американские учёные использовали метод молекулярно-лучевой эпитаксии (molecular beam epitaxy) (иллюстрация Brookhaven National Laboratory).
Для создания плёнок американские учёные использовали метод молекулярно-лучевой эпитаксии (molecular beam epitaxy) (иллюстрация Brookhaven National Laboratory).
 

"Мы пошли другим путём", - рассказывает в пресс-релизе лаборатории Иван Бозович, руководивший новым исследованием. Он и его коллеги тоже создавали слои веществ, но при этом формировали многослойные структуры. Таким методом в прошлом году они "утрамбовали" сверхпроводимость в слой толщиной 1-2 нанометра. Теперь же учёные подняли планку ещё выше.

Исследователи собрали шесть слоёв непроводящего оксида меди-лантана (La2CuO4), сверху нанесли ещё шесть пластов металлического оксида меди-лантана-стронция (La1,65Sr0,45CuO4). Электроны, протекающие между этими двумя оксидами, спонтанно образовали узкий сверхпроводящий участок. Чтобы определить, на каком именно уровне "пирога" он рождается, физики создали несколько вариантов системы, разместив в разных слоях подавляющий сверхпроводимость цинк.

"Испортив" таким способом один из слоёв, учёные заметили, что критическая температура, при которой в нём обеспечивается сверхпроводимость, упала с 32 до 18 кельвинов. Ничего подобного при изменении структуры других уровней не происходило.

Учёные отмечают, что чем тоньше слой материала, тем выше температура его перехода в сверхпроводящее состояние. В данном случае толщина каждого слоя не превышала три элементарные ячейки (иллюстрация Brookhaven National Laboratory).
Учёные отмечают, что чем тоньше слой материала, тем выше температура его перехода в сверхпроводящее состояние. В данном случае толщина каждого слоя не превышала три элементарные ячейки (иллюстрация Brookhaven National Laboratory).
 

Таким образом, получается, что высокотемпературная сверхпроводимость (при 32 кельвинах или -241 °C) возникла во втором пласте оксида лантана-меди, толщина которого составляла всего 0,66 нанометра. До этого считалось, что такая "двумерная" сверхпроводимость будет нестабильной. Иван и его коллеги доказали, что это не так.

Конечно, соседние слои снабжают главную рабочую лошадку электронами, но, по мнению Бозовича, то же самое происходило бы и в их отсутствие, если бы на подмогу пришло внешнее электрическое поле.

"Статичные электрические поля не могут проникать внутрь хороших проводников глубже, чем на один нанометр", - рассказывает Бозович. Именно поэтому нужны столь тонкие сверхпроводники. Их можно будет использовать в электронике.

Статья авторов открытия опубликована в журнале Science. Читайте также о сверхпроводнике полуторного рода и о сверхпроводимости спиновых триплетов, а ещё о том, как очаги сверхпроводимости были обнаружены при температуре выше критической.

Источник: Мембрана

Обновлено 03.11.2009 15:19
You are here:   ГлавнаяРазделы сайтаВыставка инновацийВыставка инновацийСоздан самый тонкий в мире сверхпроводник
| + -

Наши партнеры

Ижевский государственный технический университет Бизнес-инкубатор ИжГТУ имени М.Т. Калашникова Нанотехнологии в Удмуртской Республике Факультет  информатики Кубанского государственного аграрного университета Мир инноваций ВЫПУСКНИКИ ИМИ-ИжГТУ Джаз-оркестр ИМИ-ИжГТУ Спортлагерь ИМИ-ИжГТУ «Галево» Литературное объединение (ЛИТО) ИжГТУ «Прикосновение»