Долгое время теоретики спорили, может ли вообще сверхпроводимость существовать в столь малых объёмах. Многие научные группы пытались получить очень тонкие плёнки, например из купратов (cuprate), материалов, основой которых служили оксиды меди. Однако результат был по большей части один и тот же: слишком большая шероховатость поверхности плёнки сводила все усилия на нет.
"Мы пошли другим путём", - рассказывает в пресс-релизе лаборатории Иван Бозович, руководивший новым исследованием. Он и его коллеги тоже создавали слои веществ, но при этом формировали многослойные структуры. Таким методом в прошлом году они "утрамбовали" сверхпроводимость в слой толщиной 1-2 нанометра. Теперь же учёные подняли планку ещё выше.
Исследователи собрали шесть слоёв непроводящего оксида меди-лантана (La2CuO4), сверху нанесли ещё шесть пластов металлического оксида меди-лантана-стронция (La1,65Sr0,45CuO4). Электроны, протекающие между этими двумя оксидами, спонтанно образовали узкий сверхпроводящий участок. Чтобы определить, на каком именно уровне "пирога" он рождается, физики создали несколько вариантов системы, разместив в разных слоях подавляющий сверхпроводимость цинк.
"Испортив" таким способом один из слоёв, учёные заметили, что критическая температура, при которой в нём обеспечивается сверхпроводимость, упала с 32 до 18 кельвинов. Ничего подобного при изменении структуры других уровней не происходило.
Таким образом, получается, что высокотемпературная сверхпроводимость (при 32 кельвинах или -241 °C) возникла во втором пласте оксида лантана-меди, толщина которого составляла всего 0,66 нанометра. До этого считалось, что такая "двумерная" сверхпроводимость будет нестабильной. Иван и его коллеги доказали, что это не так.
Конечно, соседние слои снабжают главную рабочую лошадку электронами, но, по мнению Бозовича, то же самое происходило бы и в их отсутствие, если бы на подмогу пришло внешнее электрическое поле.
"Статичные электрические поля не могут проникать внутрь хороших проводников глубже, чем на один нанометр", - рассказывает Бозович. Именно поэтому нужны столь тонкие сверхпроводники. Их можно будет использовать в электронике.
Статья авторов открытия опубликована в журнале Science. Читайте также о сверхпроводнике полуторного рода и о сверхпроводимости спиновых триплетов, а ещё о том, как очаги сверхпроводимости были обнаружены при температуре выше критической.
Источник: Мембрана